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a b s t r a c t

A new approach for target quantitative analysis for comprehensive two-dimensional gas chromatography
(GC × GC), interval Multi-way Partial Least Square (iNPLS) is presented and evaluated in this paper. In
eywords:
omprehensive two-dimensional gas
hromatography
ultivariate calibration
uantitative analysis

iNPLS, the two-dimensional chromatogram is split in small sections; each of these pieces is treated as an
independent new chromatogram. Separated conventional NPLS calibration models for the concentration
of the target analyte are built for each of the pieces of the whole chromatogram, and the best model
is selected for quantitative analysis. An algorithm for iNPLS running on MatLab platform was written,
preliminarily evaluated with using solutions of model compounds with different chemical properties
and subsequently applied to quantify some allergens in perfume samples. The results were found to be

sion a

llergens

adequate, and good preci

. Introduction

One of the most significant advances on the characterization of
omplex mixtures of volatile and semi-volatile compounds is com-
rehensive two-dimensional gas chromatography (GC × GC) [1–4].
GC × GC instrument consists of two chromatographic columns

nterconnected by an interface called the modulator. The peak
apacity of GC × GC is larger than the conventional GC, because
o-eluted analytes in the first column can be separated in the sec-
nd dimension. GC × GC has been applied for qualitative and/or
ngerprint purposes [5–8], mainly coupled to mass spectrometry
etectors; however, quantitative analysis by GC × GC is still less
eveloped [9]. Due to the modulation process a single peak is split

n several small peaks, and its quantification would demand the
ntegration of each of these elements to obtain the total area for
he target compound. Although this determination of peak areas
s not as straightforward as in one-dimensional GC [10], GC × GC
uantitative analysis has been using this simple strategy of adding
he peak areas of modulated peaks [11]. Moreover, in spite of the
igh peak capacity of GC × GC, it is still possible to occasionally have

o-elution between the target compound and interferents, which
ill affect the quantitation [11].

Other problem related to quantitative data processing in
C × GC is related to the size of data files. Since the detector signal

∗ Corresponding author. Tel.: +55 19 35213057; fax: +55 19 35213023.
E-mail address: augusto@iqm.unicamp.br (F. Augusto).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.08.015
nd accuracy was obtained even for poorly resolved peaks.
© 2010 Elsevier B.V. All rights reserved.

must be digitized using high data acquisition rates (due to the small
typical, peak widths, which could be as narrow as short as 80 ms at
the baseline), the amount of data generated is also far greater than
one-dimensional GC [4]. While the data from one-dimensional GC
with a single-channel detector are basically a vector (e.g. a first
order data), chromatograms generated by GC × GC equipped with
the same detector can be seen as a two-dimensional matrix, which
causes manual interpretation of a data set into a very difficult task
(or, in many cases, virtually impossible). An alternative for analyz-
ing this highly complex amount of data is the use of multivariate
chemometric tools. Some of the suitable algorithms for analyzing
high-order data already employed on GC × GC are Parallel Factor
Analysis (PARAFAC [12] or PARAFAC2 [13]), Generalized Rank Anni-
hilation Method (GRAM) [14] and Multi-way Partial Least Squares
calibration (NPLS) [13,15]. Advantages such as handling missing
values, achieving second order advantage, handling trilinear devi-
ations or using incomplete calibration data can be achieved when
some of these algorithms are selected for data treatment [16]. Also
these chemometric methods have been applied to GC × GC data
for sample classification [17–20], signal deconvolution [21–24] or
target quantification [9,25–27].

In some instances, it is not always desirable to submit the entire
data set to chemometric analysis. Since only small portions of the

chromatogram may be relevant to a specific problem, while the
remaining amount regards no significant information of the sam-
ple misleading the classification or quantification assets. Therefore,
the aim of this work was to propose a multi-way algorithm called
interval Multi-way Partial Least Square (iNPLS) which uses inter-
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Fig. 1. (A) Co-elution between compounds X and Y at the end of the first column;
(B) after modulation process, a single compound is transformed in several intense
and narrow peaks; (C) GC × GC chromatogram visualized as contour plot regarding
L.A.F. de Godoy et al. / T

als of multi-way data set to build calibration models. In the first
art of this work the developed iNPLS algorithm was evaluated with
tandard solutions of compounds with different chemical proper-
ies. In the second step, some compounds in a real complex sample
ere quantified (allergens in perfume samples), in order to show

he feasibility of the algorithm.

. Theory

Partial Least Squares Calibration (PLS) is the most used chemo-
etric method to build calibration models for first order data

etween independent (called X), instrumental responses, and
ependent variables (called Y). The data set are organized in two
atrices to perform the PLS model, one containing the independent

nd another one containing the dependent variables. Each row in
oth matrices corresponds to one sample. The algorithm decom-
oses the X (I × J) and Y (I × N) matrices into scores and loadings
ectors, in which I is the number of samples, J is the number of vari-
bles and N is the number of columns in matrix Y, that corresponds
o the numbers of compounds or physicochemical properties in
nalysis. The most important feature of PLS is that the decom-
osition is accomplished so that the successively computed score
ectors have the maximum covariance between X and Y (Eq. (1))
28].

ax
wa

⎡
⎣cov(ta, y)

∣∣∣∣∣∣min

⎛
⎝ I∑

i=1

J∑
j=1

(
xij − ta,iwa,j

)2

⎞
⎠

⎤
⎦ (1)

here ta (I × 1) are the PLS scores of matrix X and wa (J × 1) are the
LS weight of matrix X for the ath latent variable.

In the last years a great development in analytical instrumen-
ation has been disseminated worldwide due to the need of highly
omplex samples analysis. In this way, GC × GC was developed and
hen it is equipped with a flame ionization detector (GC × GC–FID)
matrix of second order data is obtained for each sample; the

et of some samples can be organized and visualized as a box,
here each level of the box consists of a sample. In consequence,
ro [29] proposed a chemometric method called NPLS to build
alibrations models for second order data. The NPLS algorithm
ecomposes the data set X (I × J × K) into a set of triads. A triad
onsists of one score vector t, related to the first order of the data,
nd two weight vectors wJ and wK, related to the second and third
rders, respectively. These vectors are calculated to have the maxi-
um covariance with the dependent variable y (Eq. (2)). NPLS does

ot present second order advantage, so any interferent present
n an unknown sample must also be present in the calibration
ample set.

max
J
awK

a

⎡
⎣cov(ta, y)
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⎝ I∑

i=1
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k=1

(
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J
a,j

wK
a,k

)2

⎞
⎠

⎤
⎦ (2)

The regression models built by PLS and NPLS use the whole
f the instrumental answer (independent variables) to find the
aximum covariance with the dependent variables. But, in some

ases, only one part of the instrumental data set is related with the
ependent variables. So, Norgaard et al. [30] proposed a method
alled interval Partial Least Squares (iPLS) for first order data. It
plits the data set into a number of intervals given by the ana-
yst and a PLS model is calculated for each interval, being selected
he interval with the lowest Root Mean Square of Cross-Validation

RMSECV) (Eq. (3)). Unfortunately, there is not an algorithm to
erform interval selection for second order data, although iPLS
lgorithm could be used for this proposed through the unfolding of
he second order data into a first order data. However, specifically
or GC × GC data, some problems arise when the data is unfolded:
retention of first and second columns. The dashed lines delimits the part of the
GC × GC chromatogram that would be used for an iPLS model while an iNPLS model
would use the part of the chromatogram enclosed by the rectangle.

as a single compound is transformed in several small peaks dur-
ing the modulation process, peaks from other compounds that
had co-eluted in the first dimension with the target compound
but were separated by the second column will also be included
in the selected interval for iPLS calculation; although within the
selected interval just the area of the analyte modulated peaks will
vary proportionally to the analyte concentration, variation on the
other peak areas may bias the calibration. Therefore, the separa-
tion achieved by the GC × GC second column is not fully exploited
because the iPLS model included other compounds than the target
analyte. An obvious alternative would be selecting as many inter-
vals as the number of modulated peaks for the analyte in order
to not include odd peaks in the calculation. It could be performed
by siPLS [31], an extension of iPLS, which allow selecting several
intervals simultaneously instead of just one and use the best com-
bination among the all possible interval combinations. However,
in a 60 min chromatographic run with detector operating at 100 Hz
and typical modulated peak width at baseline of 250 ms, if siPLS
were applied for a compound which is modulated five times there
would be 12,000 intervals and it would result in more than 1017

combinations.
Therefore, it is proposed a multi-way algorithm to perform

interval selection for second order data called iNPLS, which splits
the data matrix in intervals in both dimensions, so a new reduced
matrix is built from the initial one. A NPLS model is calculated for
each new matrix and the model with the lowest RMSECV is selected.

RMSE =
√∑n

i=1(ŷi − yi)
2

n
(3)

where n is the number of samples and ŷi and yi are the predicted
and the reference values for ith sample, respectively.

Fig. 1(C) exemplifies which part of the data set would be used by
NPLS, iPLS and iNPLS to build the calibration models. As the NPLS
uses the entire matrix data, the whole chromatogram showed in
Fig. 1(C) is used for the quantification. The iPLS selects one interval

of the unfolded matrix that corresponds to the part of the GC × GC
chromatogram enclosed by the dashed lines, which may contain
other peaks. Finally, the iNPLS selects only the analyte peak that is
enclosed by the rectangle inside Fig. 1.
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Table 1
Composition of the sample set #1, % (v/v).

Sample Toluene Cyclohexanone 2-Octanone 1-Octanol Undecane

1 2.0 0.0 3.0 1.0 1.0
2 2.0 3.0 0.5 0.0 0.5
3 0.0 0.0 0.0 0.0 0.0
4 0.0 1.0 0.5 3.0 1.0
5 3.0 1.0 2.0 0.0 2.0
6 3.0 0.0 1.0 0.5 0.5
7 3.0 3.0 3.0 3.0 0.0
8 1.0 3.0 2.0 0.5 1.0
9 0.5 1.0 3.0 2.0 0.5

10 2.0 1.0 0.0 0.5 3.0
11 1.0 2.0 0.0 3.0 0.5
12 3.0 0.5 0.0 2.0 1.0
13 0.0 0.5 2.0 1.0 0.5
14 0.0 3.0 1.0 2.0 3.0
15 3.0 2.0 0.5 1.0 3.0
16 0.0 2.0 3.0 0.5 2.0
17 0.5 0.0 2.0 3.0 3.0
18 2.0 2.0 2.0 2.0 0.0
19 1.0 0.5 3.0 0.0 3.0
20 0.5 2.0 1.0 0.0 1.0
21 1.0 1.0 1.0 1.0 0.0
22 0.5 3.0 0.0 1.0 2.0
23 1.0 0.0 0.5 2.0 2.0

3

3

t
c
o
(
b
n

m
c
T
s
b
p
(

3

p
G
s
g
d
[
a
g
b
c
s
m
d
A

s

Table 2
Composition of the perfume sample set #2 (concentration in ppm v/v).

Sample Benzyl alcohol Citronellol Geraniol

1 50 0 50
2 100 75 25
3 0 50 75
4 50 50 0
5 25 25 0
6 100 25 75
7 75 75 0
8 50 25 25
9 75 50 25

10 25 75 75
11 75 100 100
12 0 25 100
13 25 100 50
14 50 75 100
15 100 0 100
16 50 100 75
17 75 25 50
18 0 100 25
19 100 50 50
20 0 0 0
21 25 0 25
22 0 75 50
23 25 50 100
24 0.5 0.5 0.5 0.5 0.0
25 2.0 0.5 1.0 3.0 2.0

. Experimental

.1. Samples

For a preliminary assessment of the applicability of iNPLS
o GC × GC data, 25 synthetic test samples containing different
oncentrations of five model compounds (1-octanol, undecane, 2-
ctanone, cyclohexanone and toluene) were prepared in ethanol
sample set #1). The concentration of each test compound ranged
etween 0.0 and 3.0% (v/v) according to a Greco-Latin square plan-
ing (Table 1).

After this preliminary evaluation, iNPLS was applied to deter-
ine three allergens (geraniol, citronellol and benzyl alcohol) on a

ommercial perfume, which did not present the allergens analyzed.
wenty-five calibration samples (sample set #2) were prepared by
piking the perfume (50% v/v) with the allergens in concentration
etween zero and 100 ppm v/v according to a Greco-Latin squares
lanning and ethanol was added to complete 1.0 mL of total volume
Table 2).

.2. GC × GC–FID

The analysis was performed using a lab-made GC × GC–FID
rototype. This prototype was based on an Agilent G6890
C–FID (Hewlett-Packard, Wilmington, DE, USA) fitted with a
plit–splitless injector and using H2 (0.6 mL min−1) as the carrier
as at constant flow rate. The cryogenic modulator here used was
esigned based on devices previously described in the literature
32,33]. As cryogenic fluid, nitrogen cooled by LN2 was employed,
nd the heating media for band demobilization was hot nitro-
en at 250 ◦C. The flows of cold and hot nitrogen were toggled
y two three-way Asco (Florham Park, NJ, USA) solenoid valves,
ommanded by a DAQPad-6015 16 bits AD/DA board controlled by
elf-made software developed using the LabView v.8.2 program-

ing environment (National Instruments, Austin, TX, USA). This

evice also digitized the FID signal and was connected to an AMD
thlon 4600 GHz Dual Core microcomputer.

For the preliminary studies (sample set #1), the column
et employed was a 30 m × 0.25 mm × 0.25 �m 5% phenyl-
24 100 100 0
25 75 0 75

poly(dimethylsiloxane) column (HP-5, Agilent, Avondale, PA,
USA) connected to a 1.0 m × 0.10 mm × 0.10 �m 50% phenyl-
poly(dimethylsiloxane) column (BPX-50, SGE Incorporated, Austin,
TX, USA). The injection volume was 1 �L at 1:250 split ratio
and hydrogen head pressure was 13.0 psi. The oven temperature
program was: 60 ◦C (3 min) to 120 ◦C at 3 ◦C min−1 to 210 ◦C at
20 ◦C min−1. The injector and detector were operated at 250 ◦C. The
modulation period was set to 4.0 s and the data acquisition rate was
100 Hz.

For the perfume analysis (sample set #2), the column set
employed was a 30 m × 0.25 mm × 0.25 �m HP-5 column (Agilent,
Avondale, PA, USA) connected to a 0.9 m × 0.10 mm × 0.10 �m
poly(ethyleneglycol) column (SPwax, Supelco, Bellefonte, PA, USA).
The injection volume was 1 �L and the injector was operated at
1:30 split ratio and hydrogen head pressure was 11.2 psi. The oven
temperature program was 60 ◦C to 240 ◦C at 3 ◦C min−1. The mod-
ulation period was set to 4.0 s and the data acquisition rate was
100 Hz.

3.3. Data processing

The raw chromatograms were generated and stored as ASCII
vector files. All calculations and graph generation were performed
using MatLab 6.5 platform (MathWorks, Natick, MA, USA) fitted
with the N-way toolbox 2.11 [available in http://www.models.kvl.
dk/source/nwaytoolbox/index.asp], iToolbox 1.1 [available in
http://www.models.kvl.dk/source/itoolbox/index.asp] and run-
ning on a 2.41 GHz AMD Athlon 64 X2 4600 Dual Core Processor,
2 Gb RAM microcomputer.

4. Results and discussion

To create the quantitative models, the sample sets were split
in two sub-sets: a calibration set consisting of 17 samples and a

prediction set with 8 samples. For the sample set #1, used on the
preliminary evaluation of this approach, for each analyte the pre-
diction set included at least one sample where its concentration
was 0.0%, two samples with 0.5%, two samples with 1.0%, two sam-
ples with 2.0% and one sample with 3.0%. For the determination of
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he allergens in perfume, in the prediction set at least one sample
ad 0.0 ppm of one of the allergens tested, two samples 25 ppm, two
amples 50 ppm, two samples 75 ppm and one sample 100 ppm. To
uild the iNPLS models for each compound, the chromatograms

n the calibration and prediction sets were split in n equal sized
Signal × 1tR × 2tR) rectangular discrete pieces, whose width and
eight were previously selected by the user considering the peak
hape expected or observed for the target analyte. For each of these
ub-sets of discrete chromatogram pieces, a NPLS model for the
oncentration of the target analyte is estimated. The best model
ccording to its RMSECV is selected as representative for corre-
ating the concentration of the analyte with the chromatographic
ata.

The size of these discrete pieces of the raw chromatogram
hould be selected taking in account several aspects, being a crit-
cal parameter for the success of the procedure. Their width and
eight should be consistent with the base width of the chromato-
raphic peak on both dimensions, 1wb and 2wb, and ideally should
nclose the whole peak. Increasing the size of the discrete pieces
ill also increase the possibility of signals corresponding to other

hemical species than the target analyte (eluting near the target but
therwise well resolved from it) to be included inside the rectan-
le, decreasing the accuracy and precision of the results. However,
xcessive reduction of the dimensions of the discrete pieces to be
rocessed is also inconvenient. Obviously, if the size of the rect-
ngles is too small compared to the width of the two-dimensional

eak of the target species, the quality of the results will deterio-
ate. Also, decreasing the size of the discrete pieces will enlarge the
umber of individual NPLS models to be estimated for each analyte,
hich would result on an excessive time to compute and process

he chromatograms.

Fig. 3. Concentrations of the samples vs. predicted concentratio
Fig. 2. GC × GC chromatogram obtained for sample 25 and the regions selected by
iNPLS algorithm to build the calibrations models of toluene (A), cyclohexanone (B),
2-octanone (C), 1-octanol (D) and undecane (E).

4.1. Preliminary studies

Fig. 2 shows a typical GC × GC chromatogram for sample set #1
(sample 25). Inspection of this simple chromatogram reveals that

the five model compounds are fully resolved in both dimensions.
In this figure the regions of the chromatograms selected by iNPLS
algorithm to build the quantitative models for each compound are
also shown.

ns by iNPLS for each standard. r = correlation coefficient.



1306 L.A.F. de Godoy et al. / Talanta 83 (2011) 1302–1307

Table 3
Number of intervals in both dimensions and number of latent variables to build the
iNPLS models and RMSEC, RMSECV and RMSEP values obtained.

1Da 2Db LVc RMSEC (%) RMSECV (%) RMSEP (%)

Toluene 20 10 2 0.12 0.16 0.11
Cyclohexanone 20 5 2 0.19 0.25 0.17
2-Octanone 15 10 2 0.20 0.24 0.17
1-Octanol 10 3 3 0.20 0.29 0.17
Undecane 20 4 3 0.09 0.13 0.10
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Table 4
Number of intervals in both dimensions and number of latent variables to build
iNPLS models and RMSEC and RMSECV values obtained.

1Da 2Db LVc RMSEC (ppm) RMSECV (ppm)

Benzyl alcohol 180 4 2 11.4 15.2
Citronellol 90 11 5 6.9 9.3
Geraniol 60 10 2 8.9 12.3
a Number of intervals in the first dimension of the GC × GC chromatograms.
b Number of intervals in the second dimension of the GC × GC chromatograms.
c Latent variables.

Table 3 presents the numbers of intervals in both dimensions
selected by the analyst), the number of latent variables, RMSEC,
MSECV and RMSEP values obtained from iNPLS models for each
tandard. The relationships between reference concentration ver-
us predicted concentration by iNPLS for the five standards are
resented in Fig. 3. Correlation coefficients higher than 0.984 and

ow RMSE values (presented in Table 3) denote that the iNPLS
lgorithm selected the correct region for each model and the con-
entration prediction for the standards was performed accurately.

.2. Perfume samples

The iNPLS algorithm was able to identify and quantify correctly
he five compounds in a sample consisted of few standards; there-
ore it was evaluated with a more complex sample in which the
o-elution may affect the interval selection as well as the calibra-
ion model. A commercial perfume was chosen as complex sample
nd it was spiked with three allergens (benzyl alcohol, citronellol
nd geraniol) in different concentrations, as described in Table 2.
NPLS was used to build calibration models for them, in which the
elected region of the GC × GC chromatograms and the quantifica-
ion results were examined. The results obtained for allergens were
ompared to those obtained with iPLS and NPLS in order to verify
he advantage of not unfold the GC × GC matrix data and also to
se only one part of the chromatograms instead of the entire ones,
espectively.
GC × GC chromatogram of sample 19, which was spiked with
he allergens, is shown in Fig. 4 (top); in this figure the regions
elected by iNPLS to build the models are marked by rectangles.
he benzyl alcohol peak was recognized and it was delimited in
he GC × GC chromatogram by the rectangle A; the citronellol and

ig. 4. GC × GC chromatogram obtained for sample 19 and the regions selected by
NPLS algorithm to build the calibrations models of benzyl alcohol (A), citronellol (B)
nd geraniol (C). Top all the chromatogram, bottom a zoom in the area of interest.
a Number of intervals in the first dimension of the GC × GC chromatograms.
b Number of intervals in the second dimension of the GC × GC chromatograms.
c Latent variables.

geraniol peaks were delimited by the rectangles B and C, respec-
tively. As had occurred to the set of five standards, the algorithm
selected the correct region for each allergen. Fig. 4 (bottom) is a
zoom from Fig. 4 (top); it shows that the benzyl alcohol peak (A) is
partial overlapped with the constituents of the matrix (perfume).
Because of the partial co-elution, the first dimension interval length
was the shortest possible to avoid selection of other peaks. Unfor-
tunately, it was not possible to select only parts of those peaks also
included inside the rectangle area, but those matrix peaks do not
affect the calibration model because their areas do not vary simi-
larly to the benzyl alcohol area. Concerning the other two allergens,
the selected intervals were correctly chosen and no other peak
beyond the analyte peak was included in the calibration model.

After selection of the properly intervals, an iNPLS model was
built for each allergen. The intervals in first and second dimension,
the numbers of latent variables, RMSEC and RMSECV values are
shown in Table 4. As the benzyl alcohol peak was partially co-eluted
with other peaks, the numbers of intervals in first dimension was
180 with the purpose of select a small part of the chromatogram,
as can be observed in Fig. 4 for rectangle A. When the number of
intervals in first dimension were lower than 180, a part of the chro-
matogram was selected including the benzyl alcohol peak and a
matrix peak that is co-eluted to it, as result the prediction errors
increased. Regarding the rectangles B and C, the second one is the
biggest because there are no peaks around it; as there are two small
peaks close to the peak of citronellol, the rectangle B was a little
small. In summary, the rectangles were adjusted to delimit just
the analyte peak and even when co-elution in both dimensions
occurred the RMSEP values were smaller than those obtained by
iPLS and NPLS.

Table 5 shows the RMSEP values for iNPLS calibration models,
which were compared to the results for iPLS and NPLS. Regard-
ing the RMSEP values, it allowed concluding that iNPLS models
were more reliable than iPLS or NPLS models. The RMSEP values
showed the advantage of selecting only one part of the GC × GC
chromatograms to build iNPLS calibration models instead of the
entire chromatograms in the NPLS models. Moreover, it was evi-
denced that iPLS models had selected parts of the chromatogram
that are not related to the analyte concentration (for iPLS were used
36 intervals for benzyl alcohol model and 72 intervals for citronel-
lol and geraniol models). The graphs of predicted concentration

versus reference concentration show good linearity and correla-
tion coefficient (Fig. 5), which demonstrate the reliability of these
models.

As the NPLS does not have second order advantage, the iNPLS
algorithm has the same limitation. However, in the iNPLS is pos-

Table 5
RMSEP obtained for iNPLS, iPLS and NPLS models.

RMSEP (ppm)

iNPLS iPLS NPLS

Benzyl alcohol 10.2 32.4 28.6
Citronellol 4.5 6.5 39.3
Geraniol 6.5 11.2 44.9
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ig. 5. Concentrations of the samples vs. predicted concentrations by iNPLS for each
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ible to analyze an unknown sample that contains interferents
ot present in the calibration set since those interferents are not

ncluded in the sub-matrix selected by the iNPLS to build the
odel. Otherwise, if the interferents are included in the sub-matrix

elected by the iNPLS, the algorithm is not able to quantify the
nalyte. The proposed approach is suitable for routine quality con-
rol analysis in which the sample is well known and not calibrated
nterferents will not be present. Otherwise, a procedure for out-
ier detection can be implemented in the quality control to exclude
nomalous samples.

. Conclusions

The iNPLS approach presented here was shown to allow pre-
ise and accurate quantitation of discrete analytes from GC × GC
hromatograms. The main feature of this approach is that it is not
ecessary to perform any operation to detect the pertinent chro-
atographic peaks prior the quantitation: on its preliminary steps,

he algorithm checks models for all sections of the chromatograms,
iscarding the part which contains the relevant signal based on

nspection and comparison of RMSEC values. This is an automated
peration, which does not need intervention of the analyst. Also, for
C × GC and from the final user’s point of view this can be signifi-
antly less complex than performing conventional peak detection
nd integration: the resulting chromatograms can have literally
housands of separated peaks, and the analysis of the resulting

ntegration tables can be cumbersome, at least for less known sam-
les. The only significant user-selected parameter is the size of the
iscrete pieces, which ideally should match the first and second
imension widths of the chromatographic peak as much as possible
although this is not mandatory and easily adjusted); a mere visual

[

[
[
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inspection of the chromatogram can provide good initial estimates
for the dimensions of the integration piece. Several extensions
of this algorithm can be made to further improve its applicabil-
ity and to make it more user-friendly, such as the inclusion of
steps to pre-inspection the data and suggest (or even automatically
select) the size of discrete pieces, to its extension to four-dimension
GC × GC–MS chromatograms.
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